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We consider the problem of diffusion-controlled evolution of the A-particle-island–B-particle-island system
at propagation of the sharp annihilation front A+B→0. We show that this general problem, which includes as
particular cases the sea-sea and island-sea problems, demonstrates rich dynamical behavior from self-
accelerating collapse of one of the islands to synchronous exponential relaxation of both islands. We find a
universal asymptotic regime of the sharp-front propagation and reveal the limits of its applicability for the
cases of mean-field and fluctuation fronts.
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For the last decades the reaction-diffusion system
A+B→0, where unlike species A and B diffuse and annihi-
late in a d-dimensional medium, has acquired the status of
one of the most popular objects of research. This attractively
simple system, depending on the initial conditions and on the
interpretation of A and B �chemical reagents, quasiparticles,
topological defects, etc.�, provides a model for a broad spec-
trum of problems �1,2�. A crucial feature of many such prob-
lems is the dynamical reaction front—a localized reaction
zone which propagates between domains of unlike species.

The simplest model of a reaction front, introduced almost
two decades ago by Galfi and Racz �GR� �3�, is a quasi-one-
dimensional �quasi-1D� model for two initially separated re-
actants which are uniformly distributed on the left side
�x�0� and on the right side �x�0� of the initial boundary.
Taking the reaction rate in the mean-field form
R�x , t�=ka�x , t�b�x , t�, GR discovered that in the long-time
limit kt→� the reaction profile R�x , t� acquires the universal
scaling form

R = RfQ� x − xf

w
� , �1�

where xf � t1/2 denotes the position of the reaction front cen-
ter, Rf � t−� is the height, and w� t� is the width of the reac-
tion zone. Subsequently, it has been shown �4–8� that the
mean-field approximation can be adopted at d�dc=2,
whereas in 1D systems fluctuations play the dominant role.
Nevertheless, the scaling law �1� takes place at all dimen-
sions with �=1 /6 at d�dc=2 and �=1 /4 at d=1, so that at
any d the system demonstrates a remarkable property of the
effective dynamical repulsion of A and B: on the diffusion
length scale LD� t1/2 the width of the reaction front asymp-
totically contracts unlimitedly: w /LD→0 as t→�. Based on
this property a general concept of the front dynamics, the
quasistatic approximation �QSA�, has been developed
�4,5,8,9� which consists in the assumption that for
sufficiently long times the kinetics of the front is governed
by two characteristic time scales. One time scale
tJ=−�d ln J /dt�−1 controls the rate of change in the diffusive
current, J=JA= �JB�, of particles arriving at the reaction zone.
The second time scale tf �w2 /D is the equilibration time of
the reaction front. Assuming that tf / tJ�1 from the QSA in

the mean-field case with DA,B=D it follows that �4,5,9�

Rf � J/w, w � �D2/Jk�1/3, �2�

whereas in the 1D case w acquires the k-independent form
w��D /J�1/2 �4,5�. On the basis of the QSA a general de-
scription of spatiotemporal behavior of the system
A+B→0 has been obtained for arbitrary nonzero diffusivi-
ties �10� which was then generalized to anomalous diffusion
�11�, diffusion in disordered systems �12�, diffusion in sys-
tems with inhomogeneous initial conditions �13� and to sev-
eral more complex reactions. Following the simplest GR
model �3� the main attention has been traditionally focused
on the systems with A and B domains having an unlimited
extension—i.e., with an unlimited number of A and B par-
ticles, where asymptotically the stage of monotonous quasi-
static front propagation is always reached: tf / tJ→0 as
t→�.

Recently, in �14� a new line in the study of the
A+B→0 dynamics has been developed under the assump-
tion that the particle number of one of the species is finite;
i.e., an A-particle island is surrounded by a uniform sea of B
particles. It has been established that at sufficiently large
initial number of A particles, N0, and a sufficiently high re-
action rate constant k the death of the majority of island
particles N�t� proceeds in the universal scaling regime
N=N0G�t / tc�, where tc�N0

2 is the lifetime of the island in the
limit k ,N0→�. It has been shown that while dying, the is-
land first expands to a certain maximal amplitude xf

M �N0
and then begins to contract by the law xf =xf

M	 f�t / tc� so that
on reaching xf

M �the turning point of the front�

tM/tc = 1/e, NM/N0 = 0.19886 . . . , �3�

and, therefore, irrespective of the initial particle number and
dimensionality of the system 	4 /5 of the particles die at the
stage of the island expansion and the remaining 	1 /5 at the
stage of its subsequent contraction.

In this Rapid Communication we consider a much more
general problem of the A+B→0 annihilation dynamics with
the initially separated reactants under the assumption that the
particle number of both species is finite. More precisely, we
consider the problem of the diffusion-controlled death of
A-particle and B-particle islands at propagation of the sharp
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annihilation front A+B→0. We show that this island-island
�II� problem, of which particular cases are the GR sea-sea
�SS� problem and the island-sea �IS� problem �14�, exhibits
rich dynamical behavior and we reveal its most essential fea-
tures.

Let in the interval x� �0,L� particles A with concentration
a0 and particles B with concentration b0 be initially uni-
formly distributed in the islands x� �0,�� and x� �� ,L�, re-
spectively. Particles A and B diffuse with diffusion constants
DA and DB, and when meeting they annihilate A+B→0 with
a reaction constant k. We will assume, as usual, that concen-
trations a�x , t� and b�x , t� change only in one direction �flat
front�, and we will consider that the boundaries x=0,L are
impenetrable. Thus, our effectively one-dimensional problem
is reduced to the solution of the problem

�a/�t = DA�2a − R, �b/�t = DB�2b − R , �4�

in the interval x� �0,L� at the initial conditions a�x ,0�
=a0
��−x� and b�x ,0�=b0
�x−�� and the boundary condi-
tions �� �a ,b��x=0,L=0 where 
�x� is the Heaviside step func-
tion. To simplify the problem essentially we will assume
DA=DB=D. Then, by measuring the length, time, and con-
centration in units of L, L2 /D, and b0, respectively—i.e.,
assuming L=D=b0=1—and defining the ratio of initial con-
centrations a0 /b0=r and the ratio � /L=q, we come from
Eqs. �4� to the simple diffusion equation for the difference
concentration s=a−b,

�s/�t = �2s , �5�

in the interval x� �0,1� at the initial conditions

s0„x � �0,q�… = r, s0„x � �q,1�… = − 1, �6�

with the boundary conditions

� � s�x=0,1 = 0. �7�

According to the QSA for large k→� at times t�k−1→0
there forms a sharp reaction front w /xf →0 so that the solu-
tion s�x , t� defines the law of its propagation, s�xf , t�=0, and
the evolution of particle distributions, a=s�x�xf� and
b= �s��x�xf�. In the limits sea-sea �3� ��→� ,L→�� or
island-sea �14� problem �� finite, L→�� the corresponding
solutions sSS�x , t� and sIS�x , t� describe the initial stages of
the system’s evolution at times 
t�q, 1−q, and q�
t�1,
respectively. The general solution to Eqs. �5�–�7� for arbi-
trary r, q, and t has the form

s�x,t� = � + �
n=1

�

An�r,q�cos�n�x�e−n2�2t, �8�

where coefficients An�r ,q�=2�r+1�sin�n�q� /n� and
��r ,q�=NA−NB=rq− �1−q� is the difference of the reduced
number of A and B particles which remains constant. At
t�1 /�2 the main mode in Eq. �8� becomes dominant, so
neglecting the contribution of small-scale modes we find

s = � + A1�r,q�cos��x�e−�2t + ¯ . �9�

Taking s�xf , t�=0 we obtain from Eq. �9� the law of the front
motion,

cos��xf� = Ce�2t + ¯ , �10�

where coefficient C can be represented in the form

C = − �/A1 = q�r� − r�/A1 = �q� − q�/q�A1, �11�

where q�=1 / �r+1� and r�= �1−q� /q are the critical values
of q and r at which C reverses its sign. From Eq. �10� it
follows that at �C��1 /e and r�r� ,q�q�, when the ratio of
the initial particle numbers,

 =
NA0

NB0
=

r

r�

=
�1 − q��q
�1 − q�q�

� 1, �12�

the front xf�t� moves either towards the boundary x=0
��1� or towards the boundary x=1 ��1� so that in the
limit k→� the island of a smaller particle number �A or B,
respectively� dies within a finite time

tc = �1/�2��ln�C�� . �13�

From Eqs. �10� and �13� in the time interval 1 /�2� t� tc we
obtain

xf = �1/��arccos��e�2�t−tc�� �14�

�here and in what follows the upper sign corresponds to
�1 and the lower sign corresponds to �1�, from which
for the front velocity v ḟ = ẋf we find

v f = − � cot��xf� = � �/�
e2�2�tc−t� − 1� . �15�

Making use then of Eq. �13�, for the distribution of particles
�a=s�x�xf� ,b= �s��x�xf� �14�� at �1 we obtain

s = ��1 � cos��x�e�2�tc−t�� + ¯ . �16�

Thus from the condition NA=�0
xf sdx=NB+� we find the

laws of decay of the A and B particle numbers,

NA = ����/���
e2�2�tc−t� − 1 � �xf� , �17�

and then we derive finally the diffusive boundary current in
the vicinity of the front,

J = � − �s/�x�x=xf
= ����
e2�2�tc−t� − 1, �18�

which according to �2� defines the evolution of the amplitude
Rf�t� and of the width of the front w�t�.

From Eqs. �13�–�18� we immediately come to the follow-
ing important conclusions: for arbitrary r and q which satisfy
the condition �C�r ,q���1 /e, at �1 or �1, �i� the motion
of the front is the universal function of the “distance” to
the collapse time tc− t with the remarkable property
xf

��tc− t�=1−xf
��tc− t�; moreover, the front velocity v f is the

unique function of xf with the remarkable symmetry
xf ↔1−xf, v f ↔−v f; �ii� the reduced particle number NA / ���
and the reduced boundary current J / ��� are
universal functions of tc− t with the remarkable properties
NA

��tc− t�=NA
��tc− t�− ��� and J��tc− t�=J��tc− t�. Introduc-

ing the relative time T= tc− t, from Eqs. �13�–�18� in the vi-
cinity T�1 /�2 of the critical point tc we come to the uni-
versal power laws of self-accelerating collapse ��v f��T−1/2�:

xf
�,1 − xf

� = 
2T + ¯ , �19�
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NA
�,NB

� = �
8/3��2���T3/2 + ¯ , �20�

J = 
2�2���
T + ¯ . �21�

At large tc�1 /�2 far from the critical point T�1 /�2 ac-
cording to Eqs. �13�–�18� there is realized the intermediate
exponential relaxation regime ��v f��e−�2T�

xf
�,� = 1/2 � e−�2T/� + ¯ , �22�

NA
�,� = ����/��e�2T�1 � �e−�2T/2 + ¯ � , �23�

J = ����e�2T�1 − e−2�2T/2 + ¯ � , �24�

which in the limit tc→���C� , ��−1�→0� becomes dominant.
Thus, at large tc�1 /�2 the point xf 	1 /2 �stationary front�
is an “attractor” of trajectories. Exactly at the critical point
�=1 from Eqs. �9� and �10� we find xf

�=1 /2 and obtain

N�/N0 = � 2

�2� sin��q�
q�1 − q�

e−�2t + ¯ , �25�

J� = 2�sin��q�/q�e−�2t + ¯ . �26�

In order to answer the question of when and how the attrac-
tor xf

�=1 /2 is reached it is necessary to retain the next term
�n=2� in the sum �8�. With allowance for the first two terms
one can easily obtain

xf
� = 1/2 − D�q�e−3�2t + ¯ , �27�

where D�q�= �A2 /�A1�=sin�2�q� /2� sin��q�. According to
Eq. �27� at q=1 /2 the coefficient D reverses its sign; there-
fore, as is to be expected, at q�1 /2 and q�1 /2 the front
reaches the attractor xf

�=1 /2 from the left and right, respec-
tively. By combining Eqs. �22� and �27�, at small but finite
�C� we have xf

�,�=1 /2−Ce�2t /�−De−3�2t+¯. We thus con-
clude that under the condition DC�0 there arises the turning
point of the front �v f

M =0� with the coordinates

tM = �1/4�2�ln��M�D/C�� + ¯ , �28�

xf
M = 1/2 − mMD�C/D�3/4 + ¯ , �29�

where �M =3� ,mM =4 / �3��3/4, whereas at DC�0 there
arises the inflection point of the front trajectory
��v f

s�=min�v f�� with the coordinates ts and xf
s which are deter-

mined by Eqs. �28� and �29� with the coefficients �s=3�M
and ms=2mM / �3�3/4. The analysis presented demonstrates
the key points of the evolution of the island-island system at
arbitrary r and q which satisfy the condition �C�r ,q���1 /e
�according to Eqs. �11� and �12� this condition restricts the
interval l��u to the values of l,u which are not too
different from unity: at q�1 we find l	0.6 and u	4�.
Below we will focus on a detailed illustration of this evolu-
tion from the initial island-sea configuration �q�1�.

A remarkable property of the island-sea configuration
q�1 is that at r�1 the ���=−1 value and all the coeffi-
cients An��=2 up to n�1 /q�1 become unique functions

of . Therefore, the system’s evolution at t�q2 is determined
by the sole parameter . At q2� t�1 we have the scaling IS
regime �14�

xf = 
2t ln1/2�2/�t�, tc�� = 2/� , �30�

with xf
M =
2 /�e and tM =2 /�e. For t�1 /2�2 with allow-

ance for two principal modes �n=1,2� we obtain from Eq.
�8�

xf = �1/��arccos�G�,t�e3�2t/4� , �31�

where G� , t�=
1+8C��e−2�2t+8e−6�2t−1 and
C��= �1−� /2. For the time of collapse tc�� we derive
from Eq. �8� the general equation for arbitrary �1,

�
n=1

�

��1�ne−n2�2tc�� = � �C��� , �32�

from which in accordance with Eq. �31� for the leading �at
small �C�� correction to Eq. �13� we find

tc�� = ��ln�C�� � �C�3 + ¯ �/�2. �33�

Using small-t representations of the series �32�, one can eas-
ily show that, with growing , tc initially grows by the law
tc��=2�1+4e−�/2

+ ¯ � /�; then, it passes through the criti-
cal point tc���→� according to Eq. �33� and finally at large
 decays by the law tc���1 / ln . From Eqs. �31� and �17�
for the starting points tM,s of front self-acceleration at small
�C� we find

tM,s/tc = 1/4 + �M,s/�ln�C�� + ¯ , �34�

with the number of A particles, NA
M,s /NA0� �C�1/4, where �M

=�s /2=ln 3 /4. Remarkably, the same as for the scaling IS
regime �3� and �30� in the vicinity �−���1 the ratio tM / tc

FIG. 1. �Color online� Evolution of the front trajectories xf�t�
with growing , calculated from Eqs. �30� �blue lines� and �31� �red
circles� at =0.5, 0.7, 0.9, 0.98, 1, 1.02, 1.1, and 2 �from left to
right�. The region of the scaling IS regime is shaded.
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reaches the universal limit tM / tc=1 /4. In Fig. 1 are shown
the calculated from Eqs. �30� and �31� trajectories of the
front xf�t�, which illustrate the evolution of the front motion
with the growing . It is seen that to 	0.7 the death of the
island A proceeds in the scaling IS regime �30� �tM / tc
=1 /e�; then, the xf�t� trajectory begins to deform, and at
small �−���1 the regime of the dominant exponential re-
laxation �22�–�24� and �34� �tM / tc	1 /4� is reached. After
the critical point �=1 has been crossed, the death of the
island A is superseded by the death of the island B, so the
front trajectory becomes monotonous and the stopping point
of the front xf

M , tM �v f
M =0� “transforms” to the point of maxi-

mal deceleration of the front xf
s , ts �v f

s =min v f � �C�3/4� which
at large  shifts by the law 1−xf

s �1 /
ln  with ts�1 / ln .
One of the key features of the island-island problem is a

rapid growth of the front width w while the islands are dying.
Therefore, to complete the analysis we have to reveal the
applicability limits for the sharp front approximation
�=w /min�xf ,1−xf��1. By substituting Eq. �21� into �2� we
obtain for the self-accelerating collapse ���TQ /T�� where
for the mean-field front �MF=2 /3 and TQ

MF=1 /
�� �k. For a
perfect diffusion-controlled 3D reaction k�Dra where ra is
the annihilation radius. Thus, as our k is measured in units of
D /L2b0 �14� for the dimensionless k we have k=raL2b0. Sub-
stituting here ra�10−8 cm, L�10 cm, and b0�1022 cm−3

we find k�1016 and derive TQ
MF�10−8 /
��� so that for not

too small ��� ��−���10−8� the sharp front is not destroyed
almost down to the point of collapse. Clearly at small
���→0 the “destruction” of the front has to occur already at
the stage of exponential relaxation �22�–�26�. Substituting

Eq. �26� into �2� for the exponential relaxation we find
��e��2�t−tQ� where �MF=1 /3 and tQ

MF= �ln k� /�2. Substitut-
ing here k�1016 we obtain tQ

MF�3.7 and then from
Eq. �25� we find N�

MF��=0.1� /N0�10−13. An analogous cal-
culation for the fluctuation 1D front gives �F=3 /4,
TQ

F �1 / ����n0�2/3 and �F=1 /2, tQ
F = �ln n0� /�2 where

n0=Lb0. Substituting here n0�106 we find TQ
F �10−4 / ���2/3,

tQ
F �1.4, and n�

F��=0.1� /n0�10−4. We conclude that both for
the mean-field and the fluctuation fronts the vast majority of
the particles die in the sharp-front regime; therefore, the pre-
sented theory has a wide applicability scope.

In summary, the evolution of the island-A–island-B sys-
tem at the sharp annihilation front A+B→0 propagation has
been considered and a rich dynamical picture of its behavior
has been revealed. The theory presented may have a broad
spectrum of applications—e.g., in the description of
electron-hole luminescence in quantum wells �15�, the for-
mation of nontrivial Liesegang patterns �16�, and so on. Of
special interest is the analogy of the island-island problem
with the problem of annihilation on the catalytic surface of a
restricted medium where for unequal species diffusivities in
a recent series of papers �17� the phenomenon of annihilation
catastrophe has been discovered. Study of the much more
complicated case of unequal diffusivities and comparison
with the annihilation dynamics on the catalytic surface is a
generic and challenging problem for the future.
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